north, then $x+8 \mathrm{~km}$ east, then $2 x-2 \mathrm{~km}$ south, then $2 x+8 \mathrm{~km}$ west, then $x^{2} \mathrm{~km}$ south. The distance to the north must equal the distance to the south, so $6 x+3=$ $2 x-2+x^{2}$. Thus, $x^{2}-4 x-5=0=(x-5)(x+1)$. The only possible value of x is 5 , so substitute it in for all distances: $5+6(5)+3+5+8+2(5)-2+2(5)+8+5^{2}=102$.
A) 5
B) 30
C) 81
D) 102
24. I mixed 400 ml of 30% sugar lemonade and 200 ml of 40% sugar lemonade. That gave me $120 \mathrm{ml}+80 \mathrm{ml}=200 \mathrm{ml}$ of sugar out of 600 ml of lemonade in the two batches. During the week 100 ml of pure water evaporated, leaving 200 ml sugar in 500 ml lemonade.

A) 30%
B) 33%
C) 35%
D) 40%
25. If $\sqrt{x y} \times \sqrt{15}=\sqrt{3 x^{2}} \times \sqrt{y}$, then $15 x y=3 x^{2} y$, and $x=5$.
24.

D
A) 5
B) y
C) $5 y$
D) $5+y$
26. $\frac{x^{2}-3 x-18-x+6}{(x-6)(x+3)}=\frac{x^{2}-4 x-12}{(x-6)(x-3)}=\frac{(x-6)(x+2)}{(x-6)(x-3)}=\frac{x+2}{x+3}$.
A) 1
B) $\frac{x+2}{x+3}$
C) $\frac{x-6}{x+3}$
D) $\frac{-2}{-(x-6)}$
27. $3(3 x-4 y+5 z=13)-2(4 x-5 y+6 z=18) \Rightarrow x-2 y+3 z=3$.

$$
\text { A) } 1
$$

B) 3
C) 15
D) 28
28. Between 1000 and 5000 knights were at the start. Each day $2 / 3$ of the remaining knights fell or fled. Yesterday Saul lost his final 2 fellow knights. Work backward: Yesterday there were 3 , the day before 9 , before that 27 , then 81 , then 243 , then 729 , then 2187.7 days.
A) 70
B) 14
C) 7
D) 6
29. If $8^{2 a}=32 b,\left(2^{3}\right)^{2 a}=2^{5} b,\left(2^{6 a}\right) / 2^{5}=b=2^{6 a-5}$.
A) 2^{a}
B) $2^{6 a / 5}$
C) $2^{2 a-3}$
D) $2^{6 a-5}$

Visit our Website at http://www.mathleague.com
Steven R. Conrad, Daniel Flegler, and Adam Raichel, contest authors

Information $\mathcal{\&}$ Solutions

Spring, 2020

Directions for Grading

- Date You may give this contest any time after April 15. The Algebra Course 1 Contest is for use in your own school or district. We've enclosed a registration form for next year. Instructions for optionally submitting results are included on a separate sheet entitled "Using the Score Report Center."

■ Urgent questions? Write to comments@mathleague.com, or call 1-201-568-6328 or 1-516-365-5656.

- Scores Remind students that this is a contest, and not a test-there is no "passing" or "failing" score. Few students score as high as 24 points $(80 \%$ correct); students with half that, 12 points, should be commended!
- Solutions Detailed solutions appear in each question box, and letter answers are in the Answers columns on the right. You may copy this solution key and give a copy to every student who took this contest.
- Awards The original contest package contained 1 book award (and a bookplate you should affix to the book's inside front cover) for the 1st place student. We also enclosed 5 Certificates of Merit - 1 each for the run-ner-up on each grade level, plus extras for ties.
- Additional Book Awards \& Additional Certificates If you want to give more than 1 book award, you may purchase additional books as described below. Do you need more Certificates of Merit? If so, send your name, school, and school mailing address to our mailer at: Math Certificates, P.O. Box 17, Tenafly, NJ 07670-0017. Include a self-addressed, stamped envelope ($\mathbf{2}$ stamps required) large enough to hold certificates.

The school's top scorer will receive the book Math Contests-High School (Vol. 5). Other high scorers will receive Certificates of Merit. In any one school year, no student may win both a book and a certificate. The book and certificates were in the original contest package.

If needed, duplicate book awards may be ordered as described below.
Twenty-one books of past contests, Grades 4,5,\& 6 (Vols. 1, 2, 3, 4, 5, 6, 7), Grades $7 \& 8$ (Vols. 1, 2, 3, 4, 5, 6, 7), and High School (Vols. 1, 2, 3, 4, 5, 6, 7), are available, for $\$ 12.95$ per volume, from Math League Press, P.O. Box 17, Tenafly, NJ 07670-0017.

[^0]1. If $T=1, O=2$, and $1+2+S+S=7$, then $2 S=4$, and $S=2$.
A) 2
B) 3
C) 3.5
D) 4
2. If x is an integer, then the least possible value of $4 x^{2}$ is obtained when $x=0$.
A) -4
B) 0
C) 4
D) 16
3. $\left(c^{20}\right)\left(c^{2}\right)\left(c^{0}\right)=c^{20+2+0}=c^{22}$.
A) 0
B) c^{0}
C) c^{22}
D) c^{40}

4. I had g invited guests. Each invited guest brought 2 uninvited friends, for $2 g$ additional people. Each person brought two gifts. Multiply total people $(g+2 g)$ by the number of gifts each brought, 2 .
A) $(g+2) \times 2$
B) $(g \times 2)+2$
C) $(g+2 g) \times 2$
D) $(g+2 g) \times 2 g$
5. $4 y(x-y)-(3 x+2 y)(x-y)=[4 y-(3 x+2 y)](x-y)=[4 y-3 x-2 y](x-y)$.
A) $(6 y+3 x)(x-y)$
B) $(6 y-3 x)(x-y)$
C) $(2 y+3 x)(x-y)$
D) $(2 y-3 x)(x-y)$
6. $4 x^{2}+3 x+2 x^{3}-2 x^{2}-3 x-4 x^{3}=(3 x-3 x)+\left(4 x^{2}-2 x^{2}\right)+\left(2 x^{3}-4 x^{3}\right)$.
A) 0
B) $2 x^{2}-2 x^{3}$
C) $2 x^{2}+6 x-2 x^{3}$
D) $2 x^{2}+6 x+6 x^{3}$
7.
8. If $\frac{3}{5}(2 y)=\frac{4}{7} x$, multiply by $5 / 3: 2 y=\frac{20}{21} x$. Divide by 2 to get $\frac{10}{21} x$.
9.

A) $\frac{10}{21} x$
B) $\frac{20}{21} x$
C) $\frac{21}{20} x$
D) $\frac{21}{10} x$
8. $(x+2)(x-2)\left(x^{2}-4\right)=0=(x+2)^{2}(x-2)^{2}$, so x can be -2 or 2 .
A) 1
B) 2
C) 3
D) 4

B
9. If $x>5$ and prime, the l.c.m. of $2^{2} 5^{1} x^{2}$ and $2^{1} 3^{1} 5^{1} x^{3}$ is $2^{2} 3^{1} 5^{1} x^{3}$.
A) $10 x$
B) $60 x^{3}$
C) $60 x^{5}$
D) $600 x^{5}$
10. Water time:walking time is 30 sec.: $120 \mathrm{sec} .=$ $1: 4$, so they spend $1 / 5$ of the h hrs. in the water. Since $h \mathrm{hrs}$. $=60 \mathrm{~h}$ minutes, they will spend
 $60 \mathrm{~h} / 5 \mathrm{~min} .=12 \mathrm{~h} \mathrm{~min}$. in the water.
A) $12 h$
B) 24 h
C) 36 h
D) 48 h
11. If $x=y+1$, then $(y+1)^{2}-y^{2}=2 y+1=39 ; y=19, x=20$.
A) 39
B) 78
C) 380
D) 1521
12. $x^{3}-x^{2}+x-1=x^{2}(x-1)+(x-1)=\left(x^{2}+1\right)(x-1)$ is divisible by $x-1$, so $\mathrm{R}=0$.

[^1]13. A \perp line has negative reciprocal slope, so $y=-3 x+b$. Substitute 0 for 13 . y in original line to find x-intercept -12 ; use to find new b.
A) $y=-3 x+4$
B) $y=3 x-36$
C) $y=\frac{1}{3} x+4$
D) $y=-3 x-36$
D
14. The sum of all solutions is $-b / a$, so for $4 x^{2}-4 x-35=0$: $-(-4) / 4=1$
A) -1
B) 0
C) 1
D) 4
15. If $b^{2}+31=g^{4}=\left(g^{2}\right)^{2}=(b+1)^{2}$, then
$b^{2}+31=b^{2}+2 b+1$, so $b=15$. Substitute $b=15$ in $b+1=g^{2} ; 16=g^{2}$ and $g=4$.
A) 4
B) 11
C) 12
D) 30
16. Rate $r \mathrm{~m} / \mathrm{min} .=60 r \mathrm{~m} / \mathrm{hr}$. $=60 \mathrm{r} / 1000 \mathrm{~km} / \mathrm{hr}$. Divide distance k by rate to find time.
A) $\frac{1000}{r k}$
B) $\frac{60 k}{1000 r}$
C) $\frac{1000 k}{60 r}$
D) $\frac{1000}{60 r k}$
17. $4^{2 x}+4^{2 x}+4^{2 x}+4^{2 x}=4\left(4^{2 x}\right)=4^{2 x+1}=\left(2^{2}\right)^{2 x+1}=2^{4 x+2}$.
A) $2^{4 x}$
B) $2^{4 x+2}$
C) $4^{8 x}$
D) $16^{2 x}$
18. If $f(x)=8 x^{2}-2$, then $f(4)=8(4)^{2}-2=126$. $f(-4)$ will also yield 126 .
A) $f(126)$
B) $f(8)$
C) $f(-2)$
D) $f(-4)$
D
19. If $3 x-7<5, x<4$. If $3 x-7>-5, x>2 / 3$. So $2 / 3<x<4$. 1,2 , and 3 fit. A) 1
B) 2
C) 3
D) 6
20. Multiply $x^{2}+x+1=18$ by x to get $x^{3}+x^{2}+x=18 x$. The average is $18 x / 3$.
A) $6 x$
B) $9 x$
C) $18 x$
D) $36 x$
21. The Cones is an elite a cappella vocal group. Together, 4 Cones working at the same rate can set up every chair in the theater in 56 min . So it takes $4 \times 56=224$ Cone-min. of work to set up every chair. Divide 224 Cone-min. by 7 Cones to find that it will take 32 min . for 7 Cones working at the same rate to set up every chair in the theater.
A) 24
B) 32
C) 48
D) 98
22. $10^{a}=(0.01 / 100) \times 10^{b}=\left(10^{-2} / 10^{2}\right) \times 10^{b}=10^{-4} \times 10^{b}=10^{-4+b}$, so $a=b-4$.
A) $b-4$
B) $b-2$
C) $b+2$
D) $b+4$

[^0]: Copyright © 2020 by Mathematics Leagues Inc.

[^1]: A) 0
 B)
 C) x
 D) $2 x$

